NEWS LETTER

令和3(2021)年度学術変革領域研究(A)

2.5次元物質科学:

社会変革に向けた物質科学のパラダイムシフト

公募班メンバー特別対談 4

A03班

分析班 公募班 (2.5次元材料における局所触媒活性の 実空間イメージング)

高橋 康史

公募班にご応募された理由を教えてください。

私の研究室では電気化学顕微鏡を作ってい て、触媒活性を計測しています。サンプルを探していたと ころ領域が立ち上がり、目指していた方向性に近かった ため応募しました。また共同研究していた宮田さん (A02)が計画班にいらっしゃるというご縁もありました。

私自身は、柔らかい材料系の熱電変換現象、 温度差から熱起電力が発生するという現象を研究して います。カーボンナノチューブをこれまで扱ってきました が、より正確な議論をするため界面が制御された系で研 究をする必要がありました。研究を進めていくと、1次元 より2次元的な界面の方が実験しやすいと分かり、宮田 さんと一緒に二次元原子層を積層した系での研究をス タート。その後、ヘテロに積層した界面で非常に熱伝導 が小さいという面白い現象が見つかり、その研究を広げ たいと思ったところ、2.5次元領域が立ち上がったので す。それで公募研究として参加したくなり応募しました。

先生方の研究について教えていただけますか?

最近の取り組みの1つは、表面の反応性の違 いを可視化することです。水素の発生のしやすさ、CO。還 元のしやすさなどについて進めています。CO2還元で重 要になるのは、有用な化合物を作り出すための触媒を 作ること。その触媒を作るための指針を得るためには、 局所的な計測が重要になり、そのため走査型電気化学 セル顕微鏡などを独自に開発して、計測を行っています。

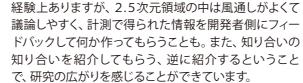
高橋さんは最初からずっと、走査型近接場 顕微鏡 (SNOM) と電気化学を研究されておられた んですか?

分析班 公募班 (格子不整合二次元ナノ界面における 熱・電荷輸送の相関の解明と制御)

柳 和宏

結構いろいろやっており、4年生のときは計算 化学、修士のときはSNOM、電気化学顕微鏡も作ってい ました。入学先は医学部だったので、その影響があり、別 の研究テーマでは細胞といった生物関係の計測をして います。

私も研究をしながら、いつの間にか熱物性と いう、どちらかというと機械工学分野の研究に足を踏み 入れています。物性物理の王道は、例えば磁性や超伝 導、光物性ですが、だんだん離れてなぜか熱の研究をし てるなと(笑)。


最近の取り組みでは、構造が制御されたファンデルワ ールス力で形成された界面において、熱がどのように流 れているか、また電気伝導との関係がどうなっているか を調べています。さらに、熱起電力の生じ方や、界面での 物質の電子構造、特にヘテロ構造やモアレ積層構造では より複雑になるので、そのあたりを総合的に見ていきた いですね。

領域内ではどのような活動を行っていますか?

この領域で主に研究している、ダイカルコゲナ イドのナノシートは試料としてすごく良いです。2.5次元 の0.5の部分が従来とは違うアプローチとなり、エッジ を照らすだけでも、曲げ、ひずみ、欠陥と、様々なものを 含むので、そこが進めたかったことに近いなと感じてい

進行中の活動としては、宮田さん、東北大の加藤さん (A01)のグループと、ヤヌスシートの触媒能を測ることな どを。他にも新しいダイカルコゲナイドの材料を作って もらい、その触媒能を測ったりも。蓬田さん(A01)とはナ ノチューブの半径と触媒能の関係を調べています。吾郷 さんのグループとはMoS2ナノリボンを計測しています。

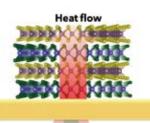
場合によっては下請けのように計測することも過去の

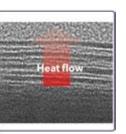
走査型電気化学セル顕微鏡による MoS₂のHER活性サイトの可視化(高橋)

0.7

僕のほうは、元々この2.5次元の研究に足を 踏み入れたきっかけの宮田さんに色々と教えてもらいな がら、一緒に研究しています。また界面の熱輸送や電気 伝導は、界面の状況が非常に大きく効いてきて、転写方 法がすごく大事です。そのため転写方法を町田さん(A02) のところで学ばさせてもらったりも。他にも、グラフェン 系の材料も調べていきたい状況になり吾郷さんに試料 をお願いしたり、計算科学で岡田さん(A01)にサポートに 入っていただいたり、たくさんの方々と活動中です。

また有機半導体を研究していらっしゃる荒井さん (A02)が、温度で層間の構造が変わるという研究を領域 会議で発表されていました。そこで僕は熱がどうなるか 非常に興味深く感じ、荒井さんの材料を使った熱の変 化に関する研究も進めています。


これまでの領域活動の中で、感じたことは?


高橋 メンバーの皆さんはそれぞれが近い研究分野 の中で、ご自身が持っている独自の技術をオープンにし て交流している様子がみられて、すごいなと。さらにこの 領域に初めて参加する方も入りやすい雰囲気を感じてい

領域会議では色々な方と話す機会があり、予想してい なかった新しい研究が始まることも。宮田グループの中 西さんとの研究は偶然のスタートでした。僕が偶然示し た情報に対して、たまたまその場にいた中西さんがそれ と同じ構造がある試料を持っていて、測ったら本当にす でいのが出て。コミュニケーションをとることやアンテナ を張ることの大切さを実感しました。

逆もあり、絶対いいはずだというものがあまりよくな いことも。でもそのときに、例えば転写方法が影響を与 えていたことが原因だったりすると、他のメンバーの方に 伺うことができます。そこも領域の良いところですね。

活動を通してすごく若手をエンカレッジしてく れてるなって感じています。というのも、この前の領域会 議で、指導している学生が若手奨励賞をいただきまし た。そのテーマは本筋にしている2次元と積層界面の研

Pump pulse

ファンデルワールス界面における熱輸送 (柳)

き、どのように熱伝導が変わるかという研究でした。割と 面白いデータが出たので、ぜひポスター発表してみたらと 学生に声をかけたところ、発表の経験値だけでなく賞も いただくことに。その学生にとって間違いなく今後の励み になり、すごくありがたいなって思いました。

そのテーマのきっかけを伺っても?

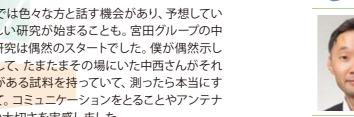
共同研究している中で、高分子材料のケースだ とイオンがたくさんインターカレートして、電気伝導率 も、構造も変わる傾向があるので、これを熱計測すると何 か信号の変調が見えるんじゃないかっていう読みがあっ て。研究指導委託で4か月間来る学生にこのテーマはど うかという話になり、3ヶ月ほどでデータを出しました。出 てきたデータが納得のいくもので、ちょうど大阪で領域会 議があるから、ポスターにまとめて発表したらどうか?と。

色々な方が関係して始まったテーマですね。

ただやっぱり解釈が難しく、今悩んでます(笑)

本当に僕らも、何か明らかにするために計測し てるのに余計に謎が深まるみたいなことが結構ありま す。逆に学生がものすごく古くなったサンプルを計測して いたら、触媒能が逆転していてエッジが悪くなってテラス が良くなってるみたいな発見も。学生の思いつきも、思 わぬ展開があるので重要だと感じますね。

Interviewees


高橋 康史 名古屋大学 工学研究科 教授

柳 和宏 東京都立大学 理学研究科

(五十音順 敬称略)

聞き手:柏田百代(広報担当) 領域ホームページ https://25d-materials.jp (ニュースレター公開日:2023年9月11日)

ターフェル勾配

0 0.15

究ではなく、高分子を積層し、そこにイオンを挿入したと